El robo de autos en Reynosa: análisis espacial desde la teoría de las actividades rutinarias y del patrón del crimen

Contenido principal del artículo

Víctor Daniel Jurado Flores
Ulises Víctor Jesús Genis Cuevas

Resumen

En este artículo se analiza el comportamiento espacial de los factores sociales y económicos asociados al robo de automóviles en Reynosa, Tamaulipas, México. Para ello se estudian los datos de las denuncias de este delito emitidas –de enero de 2016 a diciembre de 2018– ante la Fiscalía General de Justicia del estado de Tamaulipas. La información de las variables sociales y económicas se obtuvieron del Censo de Población y Vivienda 2020 a nivel de área geoestadística básica, y del Directorio Estadístico Nacional de Unidades Económicas. La metodología consistió en una regresión negativa binomial, así como en una regresión simple y una geográficamente ponderada, ambas de tipo Poisson para incorporar el componente de no estacionariedad espacial. Los resultados indican que los restaurantes y los bancos constituyen nodos atractores de crimen, y que las variables de actividades rutinarias presentan patrones espaciales heterogéneos dependiendo de la zona de la ciudad donde estén presentes.

Detalles del artículo

Cómo citar
Jurado Flores, V. D., & Genis Cuevas, U. V. J. . (2023). El robo de autos en Reynosa: análisis espacial desde la teoría de las actividades rutinarias y del patrón del crimen. Frontera Norte, 35. https://doi.org/10.33679/rfn.v1i1.2324
Sección
Artículos

Citas

Akers, R. L. (1999). Criminological theories (2.a ed.). Fitzroy Dearborn.

Aksoy, E. (2021). Evaluation of crime prevention theories through environmental design in urban renewal: A case study of Ankara-The vicinity of Hacı Bayram Mosque. Iconarp International Journal of Architecture and Planning, 9 (2), 896-918. https://doi.org/10.15320/ICONARP.2021.185

Alotaibi, N. I., Evans, A. J., Heppenstall, A. J. y Malleson, N. S. (2019). How well does western environmental theory explain crime in the Arabian context? The case study of Riyadh, Saudi Arabia. International Criminal Justice Review, 29 (1), 5-32. https://doi.org/10.1177/1057567717709497

Andresen, M. A. (2006). A spatial analysis of crime in Vancouver, British Columbia: A synthesis of social disorganization and routine activity theory. The Canadian Geographer / Le Géographe Canadien, 50 (4), 487-502. https://doi.org/10.1111/j.1541-0064.2006.00159.x

Badiora, A. (2012). Motor vehicle theft: an examination of offenders’ characteristics and targeted locations in Lagos, Nigeria. Kriminoloji Dergisi: Turkish Journal of Criminology and Criminal Justice, 4 (2), 59-70.

Badiora, A. I. (2017). Ecological theories and spatial decision making of motor vehicle theft (MVT) offenders in Nigeria. Journal of Applied Security Research, 12 (3), 374-391. https://doi.org/10.1080/19361610.2017.1315697

Bjerregaard, B., Akin, S., Moses, S. y Towers, C. (2020). Spatial and temporal variations in motor vehicle theft in a university environment. Journal of Crime and Justice, 44 (5), 595-615. https://doi.org/10.1080/0735648X.2020.1842789

Brantingham, P. L. y Brantingham, P. J. (1993). Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. Journal of Environmental Psychology, 13 (1), 3-28. https://doi.org/10.1016/S0272-4944(05)80212-9

Brantingham, P. L. y Brantingham, P. J. (1995). Criminality of place: crime generators and crime attractors. European Journal on Criminal Policy and Research, 3 (3), 5-26. https://doi.org/10.1007/BF02242925

Brantingham, P. J., Brantingham, P. L. y Andresen, M. A. (2017). The geometry of crime and crime pattern theory. En R. Wortley y M. Townsley (Eds.), Environmental criminology and crime analysis (pp. 98-116). Routledge.

Cahill, M. E. y Mulligan, G. F. (2013). The determinants of crime in Tucson, Arizona. Urban Geography, 24 (7), 582-610. https://doi.org/10.2747/0272-3638.24.7.582

Cantor, D. y Land, K. C. (1985). Unemployment and crime rates in the Post-World War II United States: A theoretical and empirical analysis. American Sociological Review, 50 (3), 317-332. https://doi.org/10.2307/2095542

Chang, D. C., Eastman, B., Talamini, M. A., Osen, H. B., Tran Cao, H. S. y Coimbra, R. (2011). Density of surgeons is significantly associated with reduced risk of deaths from motor vehicle crashes in US counties. Journal of the American College of Surgeons, 212 (5), 862-866. https://doi.org/10.1016/j.jamcollsurg.2011.01.057

Chen, J., Liu, L., Xiao, L., Xu, C. y Long, D. (2020). Integrative analysis of spatial heterogeneity and overdispersion of crime with a geographically weighted negative binomial model. ISPRS International Journal of Geo-Information, 9 (60) 1-15. https://doi.org/10.3390/ijgi9010060

Cohen, L. E. y Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 44 (4), 588-608. https://doi.org/10.2307/2094589

Copes, H. (1999). Routine activities and motor vehicle theft: A crime specific approach. Journal of Crime and Justice, 22 (2), 125-146. https://doi.org/10.1080/0735648X.1999.9721097

Cornish, D. B. y Clarke, R. V. (1987). Understanding crime displacement: An application of rational choice theory. Criminology, 25 (4), 933-948. https://doi.org/10.1111/j.1745-9125.1987.tb00826.x

Costantini, M., Meco, I. y Paradiso, A. (2018). Do inequality, unemployment and deterrence affect crime over the long run? Regional Studies, 52 (4), 558-571. https://doi.org/10.1080/00343404.2017.1341626

Coupe, T., y Blake, L. (2006). Daylight and darkness targeting strategies and the risks of being seen at residential burglaries. Criminology, 44 (2), 431-464. https://doi.org/10.1111/j.1745-9125.2006.00054.x

Da Silva, A. R. y Rodrigues, T. C. V. (2014). Geographically weighted negative binomial regression–incorporating overdispersion. Statistics and Computing, 24 (5), 769-783. https://doi.org/10.1007/s11222-013-9401-9

D’Alessio, S. J., Eitle, D. y Stolzenberg, L. (2012). Unemployment, guardianship, and weekday residential burglary. Justice Quarterly, 29 (6), 919-932. https://doi.org/10.1080/07418825.2011.605073

Dao, T. H. D. y Thill, J.-C. (2022). CrimeScape: Analysis of socio-spatial associations of urban residential motor vehicle theft. Social Science Research, 101. https://doi.org/10.1016/j.ssresearch.2021.102618

Dixon, A. y Farrell, G. (2020). Age-period-cohort effects in half a century of motor vehicle theft in the United States. Crime Science, 9 (17), 1-13. https://doi.org/10.1186/s40163-020-00126-5

Felson, M. (2017). The routine activity approach. En R. Wortley y M. Townsley (Eds.), Environmental criminology and crime analysis (2a. ed.) (pp. 87-97). Routledge.

Fuentes, C. M. y Jurado, V. (2019). Spatial pattern of motor vehicle thefts in Ciudad Juárez, Mexico: an analysis using geographically weighted Poisson regression. Papers in Applied Geography, 5 (1-2), 176-191. https://doi.org/10.1080/23754931.2019.1663755

Graham, D. J. y Glaister, S. (2003). Spatial variation in road pedestrian casualties: the role of urban scale, density and land-use mix. Urban Studies, 40 (8), 1591-1607. https://doi.org/10.1080/0042098032000094441

Haberman, C. P. (2017). Overlapping hot spots?: examination of the spatial heterogeneity of hot spots of different crime types. Criminology & Public Policy, 16 (2), 633-660. https://doi.org/10.1111/1745-9133.12303

Hannon, L., y Defronzo, J. (1998). Welfare and property crime. Justice Quarterly, 15 (2), 273-288. https://doi.org/10.1080/07418829800093741

Hodgkinson, T., Andresen, M. A. y Farrell, G. (2016). The decline and locational shift of automotive theft: A local level analysis. Journal of Criminal Justice, 44, 49-57. https://doi.org/10.1016/j.jcrimjus.2015.12.003

Hollinger, R. y Dabney, D. (1999). Motor vehicle theft at the shopping centre: An application of the routine activities approach. Security Journal, 12 (1), 63-78.

Hope, T. y Norris, P. A. (2013). Heterogeneity in the frequency distribution of crime victimization. Journal of Quantitative Criminology, 29 (4), 543-578. https://doi.org/10.1007/s10940-012-9190-x

Instituto Nacional de Estadística y Geografía (Inegi). (2018). Directorio Estadístico Nacional de Unidades Económicas. https://www.inegi.org.mx/app/descarga/?ti=6

Instituto Nacional de Estadística y Geografía (Inegi). (2020). Censo de Población y Vivienda 2020. https://www.inegi.org.mx/programas/ccpv/2020/

Kalantari, M., Ziyari, K., Gholipour, S. y Sadeghi, A. (2018). Spatio-temporal analysis of theft-related crimes in inefficient urban textures: a case study of the central part of Tehran. Journal of Geography and Spatial Justice, 1 (2), 38-55.

Kinney, J. B., Brantingham, P. L., Wuschke, K., Kirk, M. G. y Brantingham, P. J. (2008). Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment, 34 (1), 62-74. https://doi.org/10.2148/benv.34.1.62

Landero, C., Villarreal, K., Vargas, C. y Camacho, M. (2016). Carjacking: ¿victimización generada por la delincuencia organizada en Reynosa, Tamaulipas? Perspectivas Sociales, 18 (2), 106-136.

Levy, M. P. y Tartaro, C. (2010). Auto theft: A site-survey and analysis of environmental crime factors in Atlantic City, NJ. Security Journal, 23 (2), 75-94. https://doi.org/10.1057/palgrave.sj.8350088

Lu, Y. (2006). Spatial choice of auto thefts in an urban environment. Security Journal, 19 (3), 143-166. https://doi.org/10.1057/palgrave.sj.8350008

Malczewski, J. y Poetz, A. (2005). Residential burglaries and neighborhood socioeconomic context in London, Ontario: Global and local regression analysis. The Professional Geographer, 57 (4), 516-529. https://doi.org/10.1111/j.1467-9272.2005.00496.x

Mao, Y., Dai, S., Ding, J., Zhu, W., Wang, C. y Ye, X. (2018). Space-time analysis of vehicle theft patterns in Shanghai, China. ISPRS International Journal of Geo-Information, 7 (9), 357. https://doi.org/10.3390/ijgi7090357

Nakaya, T., Fotheringham, A. S., Brunsdon, C. y Charlton, M. (2005). Geographically weighted poisson regression for disease association mapping. Statistics in Medicine, 24 (17), 2695-2717. https://doi.org/10.1002/sim.2129

Oróstica, K. y Poblete, B. (2019). Mining the relationship between car theft and places of social interest in Santiago Chile. En L. Liu y R. White (Eds.), The Web Conference 2019 (pp. 811-814). Association for Computing Machinery. https://doi.org/10.1145/3308558.3316464

Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. Journal of Quantitative Criminology, 16 (1), 21-43. https://doi.org/10.1023/A:1007521427059

Park, S. M., Tark, J. y Cho, Y. (2016). Victimization immunity and lifestyle: A comparative study of over-dispersed burglary victimizations in South Korea and U.S. International Journal of Law, Crime and Justice, 45, 44-58. https://doi.org/10.1016/j.ijlcj.2015.10.004

Piza, E., Feng, S., Kennedy, L. y Caplan, J. (2017). Place-based correlates of motor vehicle theft and recovery: measuring spatial influence across neighbourhood context. Urban Studies, 54 (13), 2998-3021. https://doi.org/10.1177/0042098016664299

Piza, E. L. y Carter, J. G. (2018). Predicting initiator and near repeat events in spatiotemporal crime patterns: an analysis of residential burglary and motor vehicle theft. Justice Quarterly, 35 (5), 842-870. https://doi.org/10.1080/07418825.2017.1342854

Quick, M., Li, G. y Brunton-Smith, I. (2018). Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale. Journal of Criminal Justice, 58, 22-32. https://doi.org/10.1016/j.jcrimjus.2018.06.003

Roberts, A. y Block, S. (2013). Explaining temporary and permanent motor vehicle theft rates in the United States a crime-specific approach. Journal of Research in Crime and Delinquency, 50 (3), 445-471. https://doi.org/10.1177/0022427812453143

Sallybanks, J. y Brown, R. (1999). Vehicle crime reduction: Turning the corner. Policing and Reducing Crime Unit: Police Research Series.

Sánchez Salinas, O. A. y Fuentes Flores, C. M. (2016). El robo de vehículos y su relación espacial con el contexto sociodemográfico en tres delegaciones centrales de la Ciudad de México (2010). Investigaciones Geográficas, (89), 107-120. https://doi.org/10.14350/rig.48763

Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública (SESNSP). (2022). Tamaulipas. Total de delitos [Gráfica]. Observatorio Nacional Ciudadano: Seguridad, Justicia y Legalidad. https://delitosmexico.onc.org.mx/tendencia/tamaulipas

Song, J., Andresen, M. A., Brantingham, P. L. y Spicer, V. (2017). Crime on the edges: Patterns of crime and land use change. Cartography and Geographic Information Science, 44 (1), 51-61. https://doi.org/10.1080/15230406.2015.1089188

Sypion-Dutkowska, N. y Leitner, M. (2017). Land use influencing the spatial distribution of urban crime: A case study of Szczecin, Poland. ISPRS International Journal of Geo-Information, 6 (3), 1-23. https://doi.org/10.3390/ijgi6030074

Tavares, J. P. y Costa, A. C. (2021). Spatial modeling and analysis of the determinants of property crime in Portugal. ISPRS International Journal of Geo-Information, 10 (11), 731. https://doi.org/10.3390/ijgi10110731

Tillyer, M. S. y Walter, R. J. (2019). Busy businesses and busy contexts: the distribution and sources of crime at commercial properties. Journal of Research in Crime and Delinquency, 56 (6), 816-850. https://doi.org/10.1177/0022427819848083

Vilalta, C. J. y Fondevila, G. (2019). Modeling crime in an uptown neighborhood: the case of Santa Fe in Mexico City. Papers in Applied Geography, 5 (1-2), 1-12. https://doi.org/10.1080/23754931.2018.1554502

Wang, L., Lee, G. y Williams, I. (2019). The spatial and social patterning of property and violent crime in Toronto neighbourhoods: A spatial-quantitative approach. ISPRS International Journal of Geo-Information, 8 (1), 1-18. https://doi.org/10.3390/ijgi8010051

Wang, Z. y Zhang, H. (2019). Could crime risk be propagated across crime types? ISPRS International Journal of Geo-Information, 8 (5), 1-15. https://doi.org/10.3390/ijgi8050203

Wortley, R. y Townsley, M. (Eds.). (2017). Environmental criminology and crime analysis. Routledge, Taylor & Francis Group.

Wu, L., Ye, X. y Webb, D. (2012). Space-time analysis of auto burglary patterns in a fast-growing small city. International Journal of Applied Geospatial Research, 3 (4), 69-86. https://doi.org/10.4018/jagr.2012100104

Yang, Z., Hardin, J. W. y Addy, C. L. (2010). Score tests for zero-inflation in overdispersed count data. Communications in Statistics. Theory and Methods, 39 (11), 2008-2030. https://doi.org/10.1080/03610920902948228