Car Theft in Reynosa: Spatial Analysis from the Theory of Routine Activities and Crime Pattern

Main Article Content

Víctor Daniel Jurado Flores
Ulises Víctor Jesús Genis Cuevas

Abstract

This article analyzes the spatial behavior of social and economic factors associated with car theft in Reynosa, Tamaulipas, Mexico. For this, the data of car theft reports issued (from January 2016 to December 2018) before the Attorney General’s Office of the state of Tamaulipas were analyzed. The information on the social and economic variables was obtained from the Census of Population and Housing 2020 at the level of basic geostatistical area and the National Statistical Directory of Economic Units. The methodology consisted of a negative binomial regression, a simple regression, and a geographically weighted regression, both Poisson types to incorporate the non-stationarity spatial component. The results indicate that restaurants and banks are crime-attracting nodes and that the variables of routine activities present heterogeneous spatial patterns depending on the area of the city where they are present.

Article Details

How to Cite
Jurado Flores, V. D., & Genis Cuevas, U. V. J. . (2023). Car Theft in Reynosa: Spatial Analysis from the Theory of Routine Activities and Crime Pattern. Frontera Norte, 35. https://doi.org/10.33679/rfn.v1i1.2324
Section
Papers

References

Akers, R. L. (1999). Criminological theories (2.a ed.). Fitzroy Dearborn.

Aksoy, E. (2021). Evaluation of crime prevention theories through environmental design in urban renewal: A case study of Ankara-The vicinity of Hacı Bayram Mosque. Iconarp International Journal of Architecture and Planning, 9 (2), 896-918. https://doi.org/10.15320/ICONARP.2021.185

Alotaibi, N. I., Evans, A. J., Heppenstall, A. J. y Malleson, N. S. (2019). How well does western environmental theory explain crime in the Arabian context? The case study of Riyadh, Saudi Arabia. International Criminal Justice Review, 29 (1), 5-32. https://doi.org/10.1177/1057567717709497

Andresen, M. A. (2006). A spatial analysis of crime in Vancouver, British Columbia: A synthesis of social disorganization and routine activity theory. The Canadian Geographer / Le Géographe Canadien, 50 (4), 487-502. https://doi.org/10.1111/j.1541-0064.2006.00159.x

Badiora, A. (2012). Motor vehicle theft: an examination of offenders’ characteristics and targeted locations in Lagos, Nigeria. Kriminoloji Dergisi: Turkish Journal of Criminology and Criminal Justice, 4 (2), 59-70.

Badiora, A. I. (2017). Ecological theories and spatial decision making of motor vehicle theft (MVT) offenders in Nigeria. Journal of Applied Security Research, 12 (3), 374-391. https://doi.org/10.1080/19361610.2017.1315697

Bjerregaard, B., Akin, S., Moses, S. y Towers, C. (2020). Spatial and temporal variations in motor vehicle theft in a university environment. Journal of Crime and Justice, 44 (5), 595-615. https://doi.org/10.1080/0735648X.2020.1842789

Brantingham, P. L. y Brantingham, P. J. (1993). Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. Journal of Environmental Psychology, 13 (1), 3-28. https://doi.org/10.1016/S0272-4944(05)80212-9

Brantingham, P. L. y Brantingham, P. J. (1995). Criminality of place: crime generators and crime attractors. European Journal on Criminal Policy and Research, 3 (3), 5-26. https://doi.org/10.1007/BF02242925

Brantingham, P. J., Brantingham, P. L. y Andresen, M. A. (2017). The geometry of crime and crime pattern theory. En R. Wortley y M. Townsley (Eds.), Environmental criminology and crime analysis (pp. 98-116). Routledge.

Cahill, M. E. y Mulligan, G. F. (2013). The determinants of crime in Tucson, Arizona. Urban Geography, 24 (7), 582-610. https://doi.org/10.2747/0272-3638.24.7.582

Cantor, D. y Land, K. C. (1985). Unemployment and crime rates in the Post-World War II United States: A theoretical and empirical analysis. American Sociological Review, 50 (3), 317-332. https://doi.org/10.2307/2095542

Chang, D. C., Eastman, B., Talamini, M. A., Osen, H. B., Tran Cao, H. S. y Coimbra, R. (2011). Density of surgeons is significantly associated with reduced risk of deaths from motor vehicle crashes in US counties. Journal of the American College of Surgeons, 212 (5), 862-866. https://doi.org/10.1016/j.jamcollsurg.2011.01.057

Chen, J., Liu, L., Xiao, L., Xu, C. y Long, D. (2020). Integrative analysis of spatial heterogeneity and overdispersion of crime with a geographically weighted negative binomial model. ISPRS International Journal of Geo-Information, 9 (60) 1-15. https://doi.org/10.3390/ijgi9010060

Cohen, L. E. y Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 44 (4), 588-608. https://doi.org/10.2307/2094589

Copes, H. (1999). Routine activities and motor vehicle theft: A crime specific approach. Journal of Crime and Justice, 22 (2), 125-146. https://doi.org/10.1080/0735648X.1999.9721097

Cornish, D. B. y Clarke, R. V. (1987). Understanding crime displacement: An application of rational choice theory. Criminology, 25 (4), 933-948. https://doi.org/10.1111/j.1745-9125.1987.tb00826.x

Costantini, M., Meco, I. y Paradiso, A. (2018). Do inequality, unemployment and deterrence affect crime over the long run? Regional Studies, 52 (4), 558-571. https://doi.org/10.1080/00343404.2017.1341626

Coupe, T., y Blake, L. (2006). Daylight and darkness targeting strategies and the risks of being seen at residential burglaries. Criminology, 44 (2), 431-464. https://doi.org/10.1111/j.1745-9125.2006.00054.x

Da Silva, A. R. y Rodrigues, T. C. V. (2014). Geographically weighted negative binomial regression–incorporating overdispersion. Statistics and Computing, 24 (5), 769-783. https://doi.org/10.1007/s11222-013-9401-9

D’Alessio, S. J., Eitle, D. y Stolzenberg, L. (2012). Unemployment, guardianship, and weekday residential burglary. Justice Quarterly, 29 (6), 919-932. https://doi.org/10.1080/07418825.2011.605073

Dao, T. H. D. y Thill, J.-C. (2022). CrimeScape: Analysis of socio-spatial associations of urban residential motor vehicle theft. Social Science Research, 101. https://doi.org/10.1016/j.ssresearch.2021.102618

Dixon, A. y Farrell, G. (2020). Age-period-cohort effects in half a century of motor vehicle theft in the United States. Crime Science, 9 (17), 1-13. https://doi.org/10.1186/s40163-020-00126-5

Felson, M. (2017). The routine activity approach. En R. Wortley y M. Townsley (Eds.), Environmental criminology and crime analysis (2a. ed.) (pp. 87-97). Routledge.

Fuentes, C. M. y Jurado, V. (2019). Spatial pattern of motor vehicle thefts in Ciudad Juárez, Mexico: an analysis using geographically weighted Poisson regression. Papers in Applied Geography, 5 (1-2), 176-191. https://doi.org/10.1080/23754931.2019.1663755

Graham, D. J. y Glaister, S. (2003). Spatial variation in road pedestrian casualties: the role of urban scale, density and land-use mix. Urban Studies, 40 (8), 1591-1607. https://doi.org/10.1080/0042098032000094441

Haberman, C. P. (2017). Overlapping hot spots?: examination of the spatial heterogeneity of hot spots of different crime types. Criminology & Public Policy, 16 (2), 633-660. https://doi.org/10.1111/1745-9133.12303

Hannon, L., y Defronzo, J. (1998). Welfare and property crime. Justice Quarterly, 15 (2), 273-288. https://doi.org/10.1080/07418829800093741

Hodgkinson, T., Andresen, M. A. y Farrell, G. (2016). The decline and locational shift of automotive theft: A local level analysis. Journal of Criminal Justice, 44, 49-57. https://doi.org/10.1016/j.jcrimjus.2015.12.003

Hollinger, R. y Dabney, D. (1999). Motor vehicle theft at the shopping centre: An application of the routine activities approach. Security Journal, 12 (1), 63-78.

Hope, T. y Norris, P. A. (2013). Heterogeneity in the frequency distribution of crime victimization. Journal of Quantitative Criminology, 29 (4), 543-578. https://doi.org/10.1007/s10940-012-9190-x

Instituto Nacional de Estadística y Geografía (Inegi). (2018). Directorio Estadístico Nacional de Unidades Económicas. https://www.inegi.org.mx/app/descarga/?ti=6

Instituto Nacional de Estadística y Geografía (Inegi). (2020). Censo de Población y Vivienda 2020. https://www.inegi.org.mx/programas/ccpv/2020/

Kalantari, M., Ziyari, K., Gholipour, S. y Sadeghi, A. (2018). Spatio-temporal analysis of theft-related crimes in inefficient urban textures: a case study of the central part of Tehran. Journal of Geography and Spatial Justice, 1 (2), 38-55.

Kinney, J. B., Brantingham, P. L., Wuschke, K., Kirk, M. G. y Brantingham, P. J. (2008). Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment, 34 (1), 62-74. https://doi.org/10.2148/benv.34.1.62

Landero, C., Villarreal, K., Vargas, C. y Camacho, M. (2016). Carjacking: ¿victimización generada por la delincuencia organizada en Reynosa, Tamaulipas? Perspectivas Sociales, 18 (2), 106-136.

Levy, M. P. y Tartaro, C. (2010). Auto theft: A site-survey and analysis of environmental crime factors in Atlantic City, NJ. Security Journal, 23 (2), 75-94. https://doi.org/10.1057/palgrave.sj.8350088

Lu, Y. (2006). Spatial choice of auto thefts in an urban environment. Security Journal, 19 (3), 143-166. https://doi.org/10.1057/palgrave.sj.8350008

Malczewski, J. y Poetz, A. (2005). Residential burglaries and neighborhood socioeconomic context in London, Ontario: Global and local regression analysis. The Professional Geographer, 57 (4), 516-529. https://doi.org/10.1111/j.1467-9272.2005.00496.x

Mao, Y., Dai, S., Ding, J., Zhu, W., Wang, C. y Ye, X. (2018). Space-time analysis of vehicle theft patterns in Shanghai, China. ISPRS International Journal of Geo-Information, 7 (9), 357. https://doi.org/10.3390/ijgi7090357

Nakaya, T., Fotheringham, A. S., Brunsdon, C. y Charlton, M. (2005). Geographically weighted poisson regression for disease association mapping. Statistics in Medicine, 24 (17), 2695-2717. https://doi.org/10.1002/sim.2129

Oróstica, K. y Poblete, B. (2019). Mining the relationship between car theft and places of social interest in Santiago Chile. En L. Liu y R. White (Eds.), The Web Conference 2019 (pp. 811-814). Association for Computing Machinery. https://doi.org/10.1145/3308558.3316464

Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. Journal of Quantitative Criminology, 16 (1), 21-43. https://doi.org/10.1023/A:1007521427059

Park, S. M., Tark, J. y Cho, Y. (2016). Victimization immunity and lifestyle: A comparative study of over-dispersed burglary victimizations in South Korea and U.S. International Journal of Law, Crime and Justice, 45, 44-58. https://doi.org/10.1016/j.ijlcj.2015.10.004

Piza, E., Feng, S., Kennedy, L. y Caplan, J. (2017). Place-based correlates of motor vehicle theft and recovery: measuring spatial influence across neighbourhood context. Urban Studies, 54 (13), 2998-3021. https://doi.org/10.1177/0042098016664299

Piza, E. L. y Carter, J. G. (2018). Predicting initiator and near repeat events in spatiotemporal crime patterns: an analysis of residential burglary and motor vehicle theft. Justice Quarterly, 35 (5), 842-870. https://doi.org/10.1080/07418825.2017.1342854

Quick, M., Li, G. y Brunton-Smith, I. (2018). Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale. Journal of Criminal Justice, 58, 22-32. https://doi.org/10.1016/j.jcrimjus.2018.06.003

Roberts, A. y Block, S. (2013). Explaining temporary and permanent motor vehicle theft rates in the United States a crime-specific approach. Journal of Research in Crime and Delinquency, 50 (3), 445-471. https://doi.org/10.1177/0022427812453143

Sallybanks, J. y Brown, R. (1999). Vehicle crime reduction: Turning the corner. Policing and Reducing Crime Unit: Police Research Series.

Sánchez Salinas, O. A. y Fuentes Flores, C. M. (2016). El robo de vehículos y su relación espacial con el contexto sociodemográfico en tres delegaciones centrales de la Ciudad de México (2010). Investigaciones Geográficas, (89), 107-120. https://doi.org/10.14350/rig.48763

Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública (SESNSP). (2022). Tamaulipas. Total de delitos [Gráfica]. Observatorio Nacional Ciudadano: Seguridad, Justicia y Legalidad. https://delitosmexico.onc.org.mx/tendencia/tamaulipas

Song, J., Andresen, M. A., Brantingham, P. L. y Spicer, V. (2017). Crime on the edges: Patterns of crime and land use change. Cartography and Geographic Information Science, 44 (1), 51-61. https://doi.org/10.1080/15230406.2015.1089188

Sypion-Dutkowska, N. y Leitner, M. (2017). Land use influencing the spatial distribution of urban crime: A case study of Szczecin, Poland. ISPRS International Journal of Geo-Information, 6 (3), 1-23. https://doi.org/10.3390/ijgi6030074

Tavares, J. P. y Costa, A. C. (2021). Spatial modeling and analysis of the determinants of property crime in Portugal. ISPRS International Journal of Geo-Information, 10 (11), 731. https://doi.org/10.3390/ijgi10110731

Tillyer, M. S. y Walter, R. J. (2019). Busy businesses and busy contexts: the distribution and sources of crime at commercial properties. Journal of Research in Crime and Delinquency, 56 (6), 816-850. https://doi.org/10.1177/0022427819848083

Vilalta, C. J. y Fondevila, G. (2019). Modeling crime in an uptown neighborhood: the case of Santa Fe in Mexico City. Papers in Applied Geography, 5 (1-2), 1-12. https://doi.org/10.1080/23754931.2018.1554502

Wang, L., Lee, G. y Williams, I. (2019). The spatial and social patterning of property and violent crime in Toronto neighbourhoods: A spatial-quantitative approach. ISPRS International Journal of Geo-Information, 8 (1), 1-18. https://doi.org/10.3390/ijgi8010051

Wang, Z. y Zhang, H. (2019). Could crime risk be propagated across crime types? ISPRS International Journal of Geo-Information, 8 (5), 1-15. https://doi.org/10.3390/ijgi8050203

Wortley, R. y Townsley, M. (Eds.). (2017). Environmental criminology and crime analysis. Routledge, Taylor & Francis Group.

Wu, L., Ye, X. y Webb, D. (2012). Space-time analysis of auto burglary patterns in a fast-growing small city. International Journal of Applied Geospatial Research, 3 (4), 69-86. https://doi.org/10.4018/jagr.2012100104

Yang, Z., Hardin, J. W. y Addy, C. L. (2010). Score tests for zero-inflation in overdispersed count data. Communications in Statistics. Theory and Methods, 39 (11), 2008-2030. https://doi.org/10.1080/03610920902948228